
Critical tunneling currents in quantum Hall superfluids: Pseudospin-transfer torque theory

Jung-Jung Su1,2 and Allan H. MacDonald1

1Department of Physics, The University of Texas at Austin, Austin, Texas 78712, USA
2Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

�Received 17 January 2010; revised manuscript received 22 April 2010; published 20 May 2010�

At total filling factor �=1 quantum Hall bilayers can have an ordered ground state with spontaneous
interlayer phase coherence. The ordered state is signaled experimentally by dramatically enhanced interlayer
tunnel conductances at low-bias voltages; at larger bias voltages interlayer currents are similar to those of the
disordered state. We associate this change in behavior with the existence of a critical current beyond which
static interlayer phase differences cannot be maintained, and examine the dependence of this critical current on
sample geometry, phase stiffness, and the coherent tunneling energy density. Our analysis is based in part on
analogies between coherent bilayer behavior and spin-transfer torque physics in metallic ferromagnets. Com-
parison with recent experiments suggests that disorder can dramatically suppress critical currents.
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I. INTRODUCTION

At Landau level filling factor �=1 bilayer two-
dimensional �2D� electron systems in the quantum Hall re-
gime can have broken-symmetry ground states1–4 with spon-
taneous interlayer phase coherence. These ordered states can
be viewed as excitonic superfluids5,6 or as XY pseudospin
ferromagnets7 in which the pseudospin is formed from the
two-valued which layer quantum degree of freedom. The
most robust experimental signature of these states, a vastly
enhanced interlayer tunnel conductance8–11 at small-bias
voltages, is still poorly understood from a quantitative point
of view.

Two types of ideas, which differ most essentially in how
the bias voltage is introduced in the theory, have been ex-
plored in an effort to understand the height and width of the
tunnel conductance peak. In one approach12–15 the bias volt-
age is introduced as an effective magnetic field, uniform
across the bilayer, which induces pseudospin precession
around the ẑ axis, driving the interlayer phase difference at a
steady rate and inducing a purely oscillating interlayer cur-
rent. When the microscopic interlayer tunneling amplitude is
treated as a perturbation, thermal and disorder fluctuations of
the condensate are then responsible added to V3MOD begin
for a finite dc conductance peak. We refer to this type of
theory below as the weak-coupling theory of the tunneling
anomaly. Weak-coupling theories predict12–15 splitting of the
zero-voltage tunnel conductance peak into separate finite
voltage peaks in the presence of a magnetic field component
parallel to the two-dimensional layers, an effect that is not16

seen experimentally. The second type of transport theory17–21

is formulated in terms of local chemical potentials of fermi-
onic quasiparticles which may be altered by the ordered-state
condensate but are still responsible for charge conduction. In
this type of theory the tunnel conductance is finite even in
the absence of disorder and thermal fluctuations because
charge has to be driven between normal-metal source and
drain contacts. The resistance generally depends18,21 on how
the fermionic degrees of freedom which carry charge be-

tween leads are influenced by order parameter and disorder
configurations and cannot be described in terms of conden-
sate dynamics alone. In the second approach the width in
voltage of the conductance peak is simply equal to the prod-
uct of this resistance and the maximum current between
source and drain at which the order parameter can maintain a
time-independent steady-state value.

In this paper we expand on the second type of theory of
the conductance peak, using pseudospin-transfer torque
ideas22,23 borrowed from recent ferromagnetic-metal spin-
tronics literature to model the influence of the transport cur-
rent on the pseudospin magnetization. We find that the criti-
cal current depends, in general, on details of the sample
geometry and on how disorder and localization physics in-
fluence transport inside the system. Generally speaking,
however, the critical current is proportional to system area
and to the interlayer tunneling amplitude when the conden-
sate’s Josephson length is larger than the system perimeter
and proportional to the system perimeter and to the square
root of the interlayer tunneling amplitude when it is shorter.

Our paper is organized as follows. In Sec. II we introduce
the pseudospin-transfer torque theory of order-parameter dy-
namics in a bilayer quantum Hall ferromagnet. We use this
theory in Sec. III to discuss critical current values from a
qualitative point of view. In Sec. IV we report on a series of
numerical studies which take into account the two-
dimensional nature of the systems of interest and the edge
dominated current paths typical of strong magnetic fields.
The pseudospin-transfer torque theory enables us to assess
the influence of sample geometry on critical currents. Finally
in Sec. V we discuss the significance of our findings in rela-
tion to recent experiments. We find that experimental critical
currents are several orders of magnitude smaller than theo-
retical ones and argue that vortexlike disorder-induced pseu-
dospin textures must be largely responsible for this discrep-
ancy. We propose experimental studies which can test our
ideas and thereby achieve progress toward a quantitative
theory of the spontaneous coherence tunneling anomaly.
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II. PSEUDOSPIN MAGNETISM AND THE LANDAU-
LIFSHITZ-SLONCZEWSKI EQUATION

In the lattice model24 of �=1 bilayer systems, the local
which layer degree of freedom can be expressed as a pseu-
dospin defined by the operator

S� i =
1

2 �
�,��

ai,�
† ���,��ai,��, �1�

where i is the site index, � is the layer index, and �� is the
Pauli matrix vector. The pseudospin Hamiltonian has the
form24

Hint =
1

2�
i,j

�2Hi,j − Fi,j
S �Si

zSj
z − Fi,j

D �Si
xSj

x + Si
ySj

y� , �2�

where Hi,j = �i ,� ; j ,���Vcol�i ,� ; j��� is the direct Coulomb
interaction associated with the ẑ pseudospin component
�i.e., with charge transfer between layers�, Fi,j

S

= �i ,� ; j ,��Vcol�i ,� ; j�� is the exchange interaction between
orbitals in the same layer, and Fi,j

D = �i ,� ; j , �̄�Vcol�i ,� ; j�̄� is
the exchange interaction between orbitals located in different
layers. Since Hi,j is generally larger than Fi,j

S , the classical
ground state is an easy-plane pseudospin ferromagnet with a
hard ẑ axis. In the limit of smooth textures the pseudospin
energy functional has the form7

E�m� � =	 d2r
��mz�2 +
1

2
�s���� mx�2 + ��� my�2� −

1

2
�tnmx� ,

�3�

where m� = �mx ,my ,mz
 is the local pseudospin direction. The
parameters which appear in this expression are the aniso-
tropy parameter ��0, the pseudospin stiffness �or equiva-
lently the exciton superfluid density� �s, the splitting between
symmetric and antisymmetric single-particle bilayer states
due to interlayer tunneling �t, and the pseudospin density n.

The mean-field-theory pseudospin ferromagnet1 consists
of a full Landau level of electrons in identical phase coherent
bilayer states. It follows that the mean-field-theory pseu-
dospin density n is equal to the full Landau-level density,
�2	l2�−1. �Here l= �
c /eB�1/2, where B is the magnetic field
strength and l is the magnetic length.� Mean-field theory can
also used7 to find explicit expressions for �s and �. In prac-
tice the values of these three parameters are modified25 by
quantum and thermal fluctuations. The fourth parameter �t is
exponentially sensitive to the tunnel barrier between layers.
Parameters values can also be influenced by disorder on
length scales shorter than those on which this coarse-grained
continuum theory is applied; disorder on longer length scales
would have to be treated explicitly as we mention in the
discussion section. The upshot is that the numerical values of
the parameters in Eq. �3� are usually not accurately known
and likely vary substantially from sample to sample. It is
worth noting that n must vanish at finite temperatures when
�t→0 since two-dimensional systems cannot support spon-
taneous long-range phase order. Among all continuum model
parameters the value of �s, which is typically �10−4 eV, is
likely the most reliably known.

Since the which layer pseudospin and the true electron
spin have identical quantum-mechanical descriptions, we can
borrow from the ferromagnetic-metal spintronics
literature22,23 and use the Landau-Lifshitz-Slonczewski
�LLS� equation to describe how the semiclassical pseudospin
dynamics is influenced by a transport current

dm�

dt
= m� � H� eff −

�j� · �r��m�
n

− ��m� �
dm�

dt
� . �4�

�j� is the number current density for electrons.� The second
term on the right-hand side of Eq. �4� captures the transport
current effect. Its role in these equations is similar to the role
played by the leads in the pioneering analysis of coherent
bilayer tunneling by Wen and Zee17 who argued that a term
should be added to the global condensate equation of motion
to account for the contribution of transport currents to the
difference in population between top and bottom layers.
Equation �4� describes how a transport current alters the con-
densate equation of motion locally. Its justification for the
bilayer quantum Hall case is discussed in more detail below.
The essential validity of this expression has been verified by
countless experiments. In the first term on the right-hand side

H� eff = �2/
n��
E�m� �/
m� � �5�

describes precessional pseudospin dynamics in an effective
magnetic field which is defined by the energy functional. The
third term accounts for damping of the collective motion due
to coupling to its environment, in the present case the Fermi
sea of quasiparticles. The damping term in Eq. �4� has the
standard isotropic form used in the magnetism literature. A
microscopic theory26 of damping in quantum Hall bilayers
makes it clear that the damping is actually quite anisotropic.
We return to this point below.

Magnetic order in the metallic ferromagnets to which this
equation is normally applied is extremely robust, justifying
the assumption that the spin-density magnitude is essentially
unchanged even when the system is driven from equilibrium
by a transport current. The only relevant degree of freedom
is the spin-density direction, whose dynamics is described by
Eq. �4�. We expect that the pseudospin-transfer torque de-
scription of bilayer quantum Hall systems will be most reli-
able when the order is most firmly established, that is far
away from the phase boundary27 that separates ordered and
disordered states.

The transport-current �Slonczewski23� term in Eq. �4� can
be understood in several different ways. In the spintronics
literature this term is normally motivated by an appeal to
total spin conservation and referred to as the spin-transfer
torque. The idea is that when a ferromagnet’s spin-polarized
quasiparticles carry a transport current through a spatial re-
gion with a noncollinear magnetization, they violate spin
conservation. The collective magnetization must therefore
compensate by rotating at a constant rate which is propor-
tional to the fermion drift velocity. The form we use for the
pseudospin-transfer torque assumes that each component of
the pseudospin current is locally equal to the number current
times the corresponding pseudospin direction cosine. This
property does not hold locally in a microscopic theory, but is
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expected to be valid in the smooth pseudospin texture limit
we address. �In metals an additional phenomenological fac-
tor is required to account for the difference in drift velocity
between majority and minority spin electrons.�

Since pseudospin is not conserved in bilayer quantum
Hall systems, as we can see from Eq. �2� or Eq. �3�, this
argument does not apply directly. If we appeal to a mean-
field description of the pseudospin ferromagnet, however, we
can obtain the same result by the following argument. Mean-
field quasiparticles satisfy a single-particle Hamiltonian for a
particle in a magnetic field which experiences both a scalar
potential and a pseudospin-dependent potential that can be
interpreted as a pseudospin effective magnetic field. Follow-
ing standard textbook derivations it is possible28 to derive an
expression for the time dependence of the contribution of a
single quasiparticle to any component of the pseudospin den-
sity. The expression contains a pseudospin precession term
and an additional term which is the divergence of the current
of that component of pseudospin. Summing over all quasi-
particle states we obtain a precession term that depends on
the configuration of the order parameter, and hence on the
pseudospin field to which it gives rise, even in the absence of
a current. We obtain the additional current-driven term on the
right-hand side of Eq. �4� when the pseudospin currents are
nonzero and space dependent. The additional term in the
equation of motion can also be viewed29 as a consequence of
an altered relationship between pseudospin-dependent effec-
tive magnetic field and pseudospin polarization direction for
quasiparticles that carry a current. Equation �4� should, in
principle, also include a current-related damping term30

which we ignore in the present paper.
When quantum Hall bilayer pseudospin ferromagnets are

tilted far from their easy plane, order tends31 to be destroyed.
For that reason we are often most interested in the limit in
which mz is much less than 1. It is therefore convenient to
express the pseudospin direction in terms of the azimuthal
angle �, which is the interlayer phase difference, and mz
which is proportional to the layer polarization. In terms of
these variables the LLS equations take the form

ṁz = 
−
2

n

�sm�

2 �� 2� +
�t



m� sin ���− �v�ps · �� �mz


+ �zm�
2 �̇ ,

�̇ = mz
 2

n

�s���� ��2 +

2

m�
4 ��� mz�2 +

2mz

m�
2 �� 2mz� −

4

n

�

−
�t




1

m�

cos ���− �v�ps · �� ��
 −
��

m�
2 ṁz. �6�

In Eq. �6� we have written j� /n, which has units of velocity,
as the pseudospin velocity v�ps.

These equations do not on their own provide a closed
description of pseudospin dynamics in the presence of elec-
trical bias potentials and need to be supplemented by a
theory which specifies the spatial dependence of the pseu-
dospin current. In general this quantity depends21 on the or-
der parameter configuration as well as on the contact geom-
etry and external current or voltage biases. The transport

theory and the pseudospin dynamics theory are therefore not
independent. In the present paper we study voltage-biased
Hall bars with source and drain leads at opposite ends and
with a variety of shapes and sizes. We assume, as a simpli-
fication, that the current distribution is defined by a local
conductivity tensor with a large Hall angle. Given these sim-
plifications, we are able to explicitly evaluate the maximum
current at which time-independent order parameters are pos-
sible. Because collective tunneling no longer contributes
strongly to the dc interlayer current when the interlayer
phase is time dependent, the interlayer conductance mecha-
nism changes qualitatively when this maximum current is
exceeded. We therefore associate this current with the experi-
mental critical current.

III. APPROXIMATE CRITICAL CURRENTS

In this section we discuss approximate upper bounds on
the critical current which are helpful in interpreting the nu-
merical results described in the following section. We use a
simplified version of the static limit of the ṁz LLS equation
�Eq. �6�� in which mz is assumed to be small

0 = −
�s



�� 2� +

1

2

�tn



sin � −

1

2
j� · �� mz. �7�

The three terms on the right-hand side can be identified as
contributions to the time dependence of mz �or equivalently
of the exciton density� due, respectively, to the divergence of
the exciton supercurrent, coherent condensate tunneling, and
the divergence of the ẑ �layer antisymmetric or counterflow�
fermionic pseudospin current. The last contribution would be
viewed as a spin-transfer torque in the analogous equations
for an easy-plane anisotropy ferromagnetic metal.

We start our qualitative discussion of critical currents by
identifying some relevant length scales. First the length
scale,

� =�2�s

�tn
, �8�

often referred to as the Josephson length because of the simi-
larity between these equations and those which describe Jo-
sephson junctions, emerges from balancing first and second
terms. In this paper we assume that the pseudospin magneti-
zation direction departs from the x̂-ŷ plane only over a small
region close to the source and drain contacts whose spatial
extent is small compared to the Josephson length. �This issue
is addressed again in the discussion section.� If this is cor-
rect, we can separate length scales by identifying a region
close to the contact which is small enough that we can ignore
coherent tunneling by setting �tn to 0 and large enough that
we can assume that mz is close to zero in the rest of the
system �see Fig. 1�. When �tn→0, Eq. �7� simply expresses
the conservation of the sum of the excitonic and quasiparticle
counterflow currents. Integration of Eq. �7� over the area
close to the contact then simply describes conversion of qua-
siparticle counterflow current into condensate counterflow
current. The total counterflow current emerging from the area
near the source contact is half of the total current flowing

CRITICAL TUNNELING CURRENTS IN QUANTUM HALL… PHYSICAL REVIEW B 81, 184523 �2010�

184523-3



into the system since mz= �1 in the contact and mz→0 far
away from the contact. In a tunnel geometry experiment the
same counterflow current is generated near source and drain
contacts located at opposite dies of the sample, so the total
counterflow supercurrent injected into the system is equal to
the total number current flowing through the system.

With this separation of length scales the quasiparticle
�pseudospin-transfer torque� term can be dropped in the re-

maining portion Ã of the total system area A. For static so-
lutions of the LLS equations the condensate must satisfy an

elliptic sine-Gordon equation inside Ã

�2�� 2� − sin � = 0. �9�

When �→� ��tn→0�, this equation states that �� 2� is zero.
It then follows from Green’s theorem that no net counterflow

supercurrent can flow into the area Ã. In the tunnel geometry
that means the time-independent order parameter values can-
not be maintained in the presence of a transport current un-
less �tn�0. The maximum tunneling current that can flow
through the system is particularly simple to determine in the
small �tn, large � limit. When � is much larger than the
system size the angle � cannot vary substantially over the
system area. With this simplification the elliptic sine-Gordon

equation can be integrated over the area Ã to obtain

�s	
P

�� � · n̂ =
�sÃ

�2 sin��� , �10�

where P is the perimeter of Ã and n̂ is proportional to the
outward normal. The left-hand side of Eq. �10� is the net

supercurrent which flows out of the region Ã from its bound-
aries near the source and drain contacts, identified above as
the number current flowing through the system. Since the

maximum value of �sin���� is 1, it follows that the maximum
current consistent with a time-independent order parameter
in this case is

IB
c =

eÃ�s


�2 =
eÃ�tn

2

. �11�

Since the critical current in the small �tn limit is propor-
tional to the area of the system we will refer to this quantity
as the bulk critical current, as suggested by the notation used
above.

For larger �tn, � is no longer larger than the system size
and it is not possible to maintain the maximum value of
sin��� across the system. The LLS equation critical current
in this regime depends on geometric details and we have not
been able to obtain rigorous bounds. We can make a rough
estimate by following an argument along the following lines.
The elliptic sine-Gordon equation is very similar to the regu-
lar sine-Gordon equation in which second-order derivatives
with respect to time and position appear with opposite signs.
This 1+1 dimensional sine-Gordon equation appears as the
Euler-Lagrange equation of motion of a system with a La-
grangian with a kinetic-energy term proportional to
�s��t��x , t��2 and a potential-energy term proportional
�tn cos���x , t��. Since total energy �integrated over position
x� is conserved by this dynamics it follows that the variation
in the typical value of �s��t��2 along the space-time bound-
ary cannot be larger than ��tn. When this energy-
conservation condition is mapped from the regular sine-
Gordon equation to the �imaginary-time� elliptic sine-
Gordon equation we can conclude that the typical value of

�� � · n̂ along the boundary of Ã near the source contact can-
not differ from the typical value of �� � · n̂ along the boundary
near the drain contact by more than ��tn. It follows that the
current flowing through the system from source to drain
should not be much larger than

IE
c �

eW�s


�
, �12�

where W is the length of the contract region or the width of
a Hall bar assumed to be contacted at its edges. We will refer
to IE

c as the edge critical current, since it is limited by the
length of one edge. For stronger interlayer coupling then
critical current is expected to vary as ��tn�1/2 once � is
smaller than the Hall bar length. Finally we note that because
of hot-spot effects in transport with large Hall angles the
pseudospin-transfer torque will act at the sample corners.
Since the supercurrent is converted into coherent pseudospin
precession over the length scale �, the effective size of the
contact region will be �� when the Hall angle is large and �
is smaller than W. We therefore estimate that the critical
current is close to

IC
c �

e�s



, �13�

independent of �tn, under these circumstances. We refer to
this last critical current as the corner critical current. In the

FIG. 1. �Color online� Separation of transport length scales in
quantum Hall superfluid transport. This theory is intended to apply
when the ordered state is well established and Hall angles are large
because of the developing �=1 quantum Hall effect. At large Hall
angles current enters and leaves the samples at the hot-spot corners,
even when the source and drain contacts �gray� fully cover the ends
of a Hall bar. When order is well established, the pseudospin ori-
entation of the transport electrons achieves alignment with the con-
densate within a relatively small fraction of the sample area close to
source and drain �solid yellow�. In these areas pseudospin-transfer
torques convert transport currents into condensate counterflow su-
percurrents. When source and drain are connected to opposite layers
a net supercurrent is injected into the interior region of the sample.
In the remaining sample area �shaded blue� collective interlayer
tunneling can act as a sink for the counterflow supercurrent.
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following section we compare numerical LLS critical cur-
rents with these rough estimates.

IV. MODEL CALCULATIONS

The numerical calculations we describe below are similar
to those carried out in micromagnetic descriptions of
ferromagnetic-metal spin-transfer torque physics, but are ap-
plied here to pseudospin-transfer physics in condensed bilay-
ers. We divide the system area into pixels within which the
pseudospin magnetization is assumed to be constant and re-
write Eq. �6� in an appropriate decretized form �see below�.
We then integrate over time numerically using time steps that
are small compared to typical evolution rates and letting
m� �t+
t�=m� �t�+m�̇ �
t. By tracking m� �t+
t�−m� �t�, we can
distinguish circumstances under which a steady state is
reached from circumstances under which the magnetization
is dynamic. In these calculations, the values used for � and
�s are taken from previous mean-field theory estimates.7 Ex-
cept where noted the pixel size was chosen to be 10l�10l,
where l is the magnetic length.

The discrete version of the spin-transfer torque term in
Eq. �6� is

ṁ��ST = �
k

Ik

nApixel
�mk,� − �m� k · m� �m�� , �14�

where k labels the four neighboring sites, A is the pixel area,
and � labels components of the magnetization orientation in
the pixel of interest. Ik is the quasiparticle number current
flow from neighbor site k into this pixel. In this paper we
estimate values of Ik by solving the resistor network model
obtained by discretizing a continuum classical linear trans-
port model with a local conductivity that includes a Hall
component. The current and voltage distribution is deter-
mined by setting �I
i, the sum of the currents into pixel i
from all neighbors j to zero

Ii = �
j

Iji = 0. �15�

Iij can be expressed in terms of conductances ��
ik and local
voltages by

Iji = �
jk

� jki�Vk − Vi� , �16�

where j varies over all the nearest-neighbors i, and k= j with
� jki=�Lij

captures the longitudinal current or k equals a di-
agonally displaced second neighbor of j and a near neighbor
of i with � jki=�H to capture the Hall current.

We thus reach a matrix equation

0 = �G��V
 , �17�

where �G�ij =�k�ikj =−�G� ji and �V
i=Vi. Given the source
and drain contact voltages, we can solve for the internal volt-
age and the interpixel current and therefore the variation in
source and drain currents across the contacts. The local Hall
conductivity was set to �H=e2 /h, which is close to the ap-
propriate value for �=1 whether or not the Hall plateau is

fully formed. Note that this is where the quantum Hall phys-
ics comes into play in our calculation. The longitudinal con-
ductivity was set to

�L = 0.05 exp�− mz
2/W��m� · m� L��m� · m� R�e2/h , �18�

where m� L,R is the magnetization orientation to the left and the
right of a boundary separating two pixels. The Hall angle
used in these calculations was therefore tan−1�20� over the
largest part of the sample in which the pseudospin magneti-
zation is close to collinear and planar. The results we report
on are not sensitive to the Hall angle, provided that it is
large. The role of disorder is considered phenomenologically
as the constant in �L at the current stage.

The current which flows into a pixel is assumed to have
the same pseudospin polarization as the pixel from which it
is incident. Currents entering or exiting from the contacts are
assumed to have mz=1 for top-layer contacts and mz=−1 for
bottom-layer contacts. For instance, the drag geometry
would then correspond to mz=1 on both ends while the tun-
neling geometry corresponds to mz=1 on the one end and
mz=−1 on the other end. In this way the pseudospin-transfer
torque and the Landau-Lifshitz precessional torque acting on
each pixel’s pseudospin can be evaluated. Note that the
pseudospin-magnetization configuration will change the con-
ductivities between pixels and therefore change the current
path.

A. Critical current identification

As mentioned in the previous section, we identify the
critical current as the circuit-current value above which a
time-independent solution no longer exists. When the exter-
nal current is small, the Gilbert damping term in the LLS
equation relaxes the pseudospin magnetization into time-
independent configurations. The behavior of the pseudospin
as the current increases is partly analogous to the behavior of
a damped pendulum driven by an increasingly strong torque.

We identify the critical current numerically by slowly in-
creasing the driving voltage �by 
V per time step� and moni-
toring the change in magnetization. To be more explicit, we
examine


m � �
i

�m� i�V + 
V� − m� i�V��/N . �19�

The sum in Eq. �19� is over all pixels. The critical current
can be defined precisely as the current above which 
m re-
mains finite when 
V→0. In practice we choose a suitably
small value of 
V and examine the current or voltage depen-
dence of 
m. We find that 
m increases dramatically and
begins oscillating at a voltage we identify as the critical volt-
age �see Fig. 2�. An alternative but more laborious method of
obtaining critical currents is to sequentially examine the dy-
namics of the pseudospin magnetization at a series of fixed
values of the applied voltage V. If the applied voltage is
below its critical value, 
m will approach zero exponentially
at large times. If the applied voltage is above its critical
value, 
m will not approach zero and usually exhibits an
oscillatory time dependence. In our calculations we used the
first approach to determine an approximate value of the criti-
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cal voltage �and hence the critical current� and the second
method to refine accuracy.

B. Ic vs �t

It is useful to start by briefly discussing the single-pixel
limit of the calculation, which should apply approximately to
the case in which the Josephson length is longer than the
system size. The steady limit of the LLS equation for the ẑ
component of the pseudospin is

0 =
1

2

�tnApixel



sin � −

I

2e
�mz,L − mz,R� , �20�

where I is the charge current flowing through the system and
mz,L and mz,R are the z component of pseudospin for the
source and drain leads at the left and right ends of the
sample. For the drag geometry �current entering and exiting
from the same layer� mz,L=mz,R, there is no spin-torque term
in the single-pixel calculation, and the steady-state equation
can be satisfied by setting sin �=0. For the tunneling geom-
etry mz,L=−mz,R, the maximum pseudospin torque that can be
compensated by the tunneling term is obtained by setting
sin �→1. We therefore obtain

Ic = IB
c =

e

2

�tnApixel. �21�

This gives a linear dependence of Ic on the single-particle
tunneling strength �t. The numerical procedures described
above accurately reproduce this simple result.

As explained previously and discussed more fully later,
we believe that the pseudospin-transfer torque in most quan-
tum Hall superfluid experiments acts in a small fraction of
the system area. We therefore need to perform calculations
with many pixels in order to represent a typical measure-
ment. Figure 3 shows numerical critical current results for a
fixed sample geometry as a function of �t. In this figure I0
= IC

c =e�s /
�8 nA is the unit of current and E0=e2 /�l is the

unit of energy. Typical quantum Hall superfluid experiments
are performed at a magnetic field of roughly 2.1 T for which
the magnetic length is 17.65 nm which gives E0=6.4 meV.
In all the calculations reported on here we used a pixel area
Apixel=10�10l2 and the mean-field theory estimate7 ��s
�0.005E0� for the pseudospin stiffness. The calculations in
Fig. 3 are for 40 pixels in the width W direction and 50
pixels in the current L direction. For this system size, the
Josephson length is approximately equal to L when
2	l2�tn�4�10−7E0. The numerical results illustrated in
Fig. 3 show the crossovers from �t dependence, to �t

1/2 de-
pendence, to saturation as �t increases that was anticipated
in our qualitative discussion. At small �tn the critical current
is reduced by a small fraction compared to the single-pixel
result in accord with the Fig. 1.

We now examine the ingredients which enter these nu-
merical results in greater detail. According to the schematic
Fig. 1, the pseudospin-transfer torque acts only near the hot
spots at which current enters and exits the sample. Figure 4
shows a typical numerical results for the spatial distribution
of the pseudospin-transfer torque. In the present model, the
area of the region in which transport current is converted into
supercurrent depends on the pixel size and the pseudospin
stiffness and anisotropy coefficients. In the tunneling geom-
etry, counterflow supercurrent is generated near both source
and drain hot spots and flows diagonally toward the center of
the sample. In Fig. 5 we show a typical supercurrent distri-
bution for the tunneling geometry case. The corresponding
distribution for an equivalent drag experiment �both contacts
connected to the same layer� is illustrated in Fig. 6. Since the
elliptic sine-Gordon equation applies locally when the
pseudospin-transfer torque is negligible, it follows from
Green’s theorem and Eq. �7� that in a steady state the total
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FIG. 2. Magnetization change per time step 
m�N vs applied
voltage in a 500l�400l system for 2	l2n�t=10−5E0. This curve
was obtained by changing the bias voltage by 
V=2.5�10−5 �V
at each time step. E0=e2 /�l, the energy unit used in all our calcu-
lations has a typical experimental value �7 meV. 
m develops
large amplitude oscillation when the voltage exceeds the critical
voltage Vc.
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FIG. 3. �Color online� Critical current vs 2	�2n�t in a 400l
�500l system. The dashed-dotted �red�, long-dashed �blue�, and
short-dashed �black� curves plot the values of the bulk �IB

c �, edge
�IE

c �, and corner �IC
c � limited critical currents discussed in the text

for this sample geometry. The square dots plot LLS equation critical
currents at a series of �tn values. All the calculations in this paper
were performed using pseudospin stiffness �exciton superfluid den-
sity� �s=0.005E0, where E0=e2 /�l is the energy unit. Currents are
in units of I0= IE

c =e�s /
. For the value of �s used in these calcula-
tions I0�8 nA.
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counterflow current injected into the interior of the sample
�which for the tunnel geometry equals the total charge cur-
rent flowing through the system� must match the area inte-
gration of �1 /2���tn /
�sin �. For a drag-geometry experi-
ment the same integral should vanish.

We now examine steady-state condensate configurations
at currents near the critical current for both small n�t and
large n�t limits. In the former case our expectation that sin �
should be nearly constant except near the hot spots is con-
firmed in Fig. 7. Collective tunneling acts sinks the injected
counterflow supercurrent at a rate that is nearly constant
across the sample area. The large n�t case is more complex.
� varies over a large range and sin��� changes sign in dif-
ferent parts of the sample. Near the sample corners � varies
rapidly with position because of the large counterflow super-
currents. In the interior of the sample the phase changes less
rapidly because the flow pattern spreads and because coher-
ent tunneling is providing the required current sink. The criti-

cal current in the large n�t limit depends in a complex way
on the geometry of the sample and on the spatial distribution
of the pseudospin-transfer torques. Nevertheless, the critical-
current saturation we find in our numerical studies suggests
that once the Josephson length is smaller compared to both
the width and the length of a Hall bar sample with a large
Hall angle, it is no longer relevant to the critical-current
value �Fig. 8�.

C. Ic vs system geometry

Finally, we briefly discuss critical-current dependence on
Hall bar dimensions at fixed n�t. In Fig. 9 we plot Ic vs Hall
bar length in a series of model samples with a fixed single-
pixel width W=10l and single-particle tunneling amplitude
2	l2n�t=10−6E0. For these parameters the W is much
smaller than the Josephson length. The critical current in-
creases linearly with sample length and is therefore propor-
tional to sample area until it saturates at L�1000l. The
length at which the current saturates is a bit longer than the
Josephson length and the value of the critical current is ac-
cordingly somewhat larger than the one-dimensional �1D�

sp
in
to
rq
ue
(E

0
)

y / l x / l

FIG. 4. �Color online� Spatial distribution of the ẑ component of
the pseudospin-transfer torque in a system with 500�400l2 area,
2	l2n�t=10−6E0, and I / Ic=0.29. The pseudospin-transfer torque in
the model studied here acts mainly in the hot-spot pixels. E0 and l
are defined as in previous figures.

y
/4
0
l

x / 40 l

FIG. 5. �Color online� Supercurrent distribution in system with
area 500�400l2, 2	l2n�t=10−6E0, and I / Ic=0.29. This plot is for a
tunneling geometry in which the source is a top-layer contact and
the drain is a bottom-layer contact. Supercurrents are generated near
both hot spots and flow diagonally toward the sample center. E0 and
l are defined as in previous figures.
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/4
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x / 40 l

FIG. 6. �Color online� Supercurrent distribution in system with
area 500�400l2, 2	l2n�t=10−6E0. This plot is for the drag-
geometry case in which the source and drain are both top-layer
contacts, but other parameters of the calculation are identical to
those used in the preceding tunnel-geometry figure. E0 and l are
defined as in previous figures.

� ( rad )

y / l x / l

FIG. 7. �Color online� Pseudospin phase distribution in a system
with area 500�400l2, 2	l2n�t=10−8E0, and I / Ic=0.75. The Jo-
sephson length at this value of �t is �2500l. Note that � is roughly
constant through the system and that its value is close to 	 /2 be-
cause I is close to Ic. The units used here are the same as in previ-
ous figures.
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estimate21 IE
c . The large L behavior is, however, consistent

with the expectation that the critical current should not in-
crease with system length once L is substantially larger than
the Josephson length �. In Fig. 10 we plot Ic vs system width
W with the length fixed at 500l and the same �t as above.
The range of W covered is limited somewhat by numerical
practicalities and goes from a width much smaller than the
Josephson length to a width which is somewhat larger. Over
this range deviations from the 1D model in which the critical
current is proportional to Hall bar width are small.

V. DISCUSSION AND CONCLUSIONS

We start our discussion by commenting briefly on some
essential differences between the critical current of a Joseph-
son junction and critical currents for coherent bilayer tunnel-
ing. In a Josephson junction, current can flow without dissi-
pation across a thin insulating layer that separates two
superconductors. The difference in condensate phase across
the junction �J is normally zero in equilibrium but can be
driven to a nonzero steady-state value when biased by cur-

rent flow IJ in the circuit in which the junction is placed. For
thick insulating layers the current is related to the phase dif-
ference by

IJ = IJ
c sin��J� , �22�

where IJ
c is the junction’s critical current. Equation �22�

should be compared with Eq. �7�. The most obvious differ-
ence is the appearance of the lateral 2D coordinate in the
coherent bilayer case. In the Josephson-junction case, the
lateral dependence of �J usually plays no role unless an ex-
ternal magnetic field is present. In the coherent bilayer case,
on the other hand, lateral translational invariance is always
broken because the pseudospin-transfer torques that ulti-
mately drive the coherent tunneling current do not act uni-
formly across the system.

A closer comparison is possible in the special case in
which the pseudospin stiffness is large enough to inhibit lat-
eral variation in �. Integration of Eq. �7� over the area then
yields for the coherent bilayer

IBL = IB
c sin��� , �23�

where IB
c is the bulk critical current discussed in the body of

the paper and

IBL = e	
P
��s



�� � +

mz

2
j�mz� · n̂ �24�

is the injected counterflow current. The most essential differ-
ence between tunneling in coherent quantum Hall bilayers
and Josephson junctions lies in the difference in physical
content between the bias currents IJ and IBL. In the case of a
Josephson junction it is a bulk dissipationless supercurrent
which flows perpendicular to the plane of the junction. In the
case of a coherent quantum Hall bilayer, it is the counterflow
�ẑ� component of the quasiparticle current. The counterflow
component of the quasiparticle current is normally fully con-
verted to condensate counterflow supercurrents by
pseudospin-transfer torques, as we have discussed at length.
The voltage drop across a Josephson junction can be mea-
sured and vanishes below the critical current. Because fermi-

� ( rad )

y / l x / l

FIG. 8. �Color online� Phase distribution of pseudospin in a
system with area 500�400l2, 2	l2n�t=1.2�10−5E0, and I / Ic

=0.97. The Josephson length at this value of �t is �70l. Note that
a steady state is reached even though � varies considerably across
the sample and has values larger than 	 /2. The units used here are
the same as in previous figures.

10 100 1000 10000

1E-3

0.01

0.1

1

L / l

Numerical
I
B
c

I
E
c

I
C
c

( �=250.7 l , W = 10 l )

I/
I 0

FIG. 9. �Color online� Critical current vs system length L for a
narrow Hall bar with width W=10l. The single-particle tunneling
amplitude 2	l2n�t=10−6�E0� corresponding to ��250l.
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FIG. 10. �Color online� Critical current vs system width W for
length L=500l. The single-particle tunneling amplitude 2	l2n�t

=10−6�E0�, corresponding to ��250l.
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onic quasiparticle transport, transverse counterflow supercur-
rents, and collective interlayer tunneling are unavoidably
intertwined in the coherent bilayer tunneling case, there is no
corresponding measurable voltage which vanishes below the
critical current. Instead, the critical current is marked experi-
mentally by an abrupt increase in measured resistances.

Next we draw attention to the significance of the qualita-
tive difference in experiment between drag-geometry and
tunnel-geometry transport measurements. If our theoretical
picture is correct there should be no qualitative difference
between voltage measurements in these two geometries at
currents below the critical current, once coherence is well
established. �Important differences between these measuring
geometries can occur in the interesting regime close to the
phase boundary where interlayer coherence may be estab-
lished over a small fraction of the sample area.32�
Pseudospin-transfer torques in tunnel and drag geometry ex-
periments with similar total circuit currents give rise to simi-
lar counterflow supercurrents, as seen in Figs. 5 and 6. Ex-
citonic condensates have a maximum local �critical�
supercurrent density that they can support, which in the case
of quantum Hall bilayer exciton condensates has been
estimated33 to be �1 A m−1. For a typical sample width of
10−4 m this corresponds to a critical current in the milliam-
pere regime, orders of magnitude larger than the current lev-
els typically employed in quantum Hall experiments. Even
accounting for possible corrections due to disorder, local
critical currents are unlikely to be approached experimentally
for either contact geometry. �If they were, we would expect
more similarity between the two experiments.� The critical
currents which are important for typical tunneling experi-
ments are not local critical currents, but global critical cur-
rents which set an upper limit on the rate at which injected
supercurrent can be sunk by collective tunneling. Since there
is no net injected supercurrent in the drag-geometry experi-
ment, only local limits apply. In the tunnel-geometry experi-
ment, the global limit must be satisfied, setting a critical-
current scale which can be orders of magnitude smaller if �t
is small. Although the relationship anticipated here between
tunneling-geometry and drag-geometry transport has not
been specifically tested experimentally, it appears to us that it
is clearly consistent with published data.

We now turn to a comparison of our theory with experi-
ment, and, in particular, with the recent experiments of Tie-
mann et al.34 who have systematically studied the depen-
dence of the tunneling critical currents in their samples on
temperature and layer separation. The data of Tiemann et al.
appear to be broadly consistent with that reported in
earlier8,16 but focus more on tunneling anomalies in the re-
gion of the phase diagram far from the coherent-state phase
boundary. Tiemann et al. find �i� that the critical tunneling
currents in their samples are proportional to system area, �ii�
that their typical value is �10 nA mm−2, and that they satu-
rate upon moving away from the coherent-state phase
boundary27 either by lowering temperature or by decreasing
the ratio of layer separation to magnetic length.

Tiemann et al.’s finding that the critical current is propor-
tional to area would be consistent with our analysis if the
Josephson length was comparable to or longer than the
�10 mm length of their long-thin Hall bars. When in the

bulk-limited critical-current regime, the critical current
should be given by IB

c

IB
c

A
=

e�̃t

4	l2

= 3.1B�T� � �̃t�eV� � 104 A mm−2, �25�

where �̃t=2	l2�tn is the interlayer tunneling amplitude suit-
ably renormalized by quantum and thermal fluctuations and
B is the magnetic field strength at �=1. Inserting the mag-
netic field strength, experimental critical currents can be re-

covered by setting �̃t→10−13 eV. Therein lies the rub. Al-

though values for �̃t on this scale do imply Josephson
lengths that are on the millimeter length scale and therefore
consistent with bulk-limited critical currents in the samples
studied by Tiemann et al., they are four or more orders of
magnitude smaller than values expected on the basis of the-
oretical estimates. Suspicion that there is a fundamental dis-
crepancy is established more convincingly, perhaps, by ob-

serving that these critical currents also correspond to �̃t
values several orders of magnitude smaller than seemingly
reliable experimental estimates35 based on the interlayer tun-
neling conductance in similar samples at zero field. The key
issue then in comparing critical-current theories with experi-
ment appears to be explaining why they are so small.

We expect on general grounds that the experimental value

of �tn� �̃t /2	l2 should be renormalized downward by both
thermal and quantum fluctuations and by disorder. Indeed
according to the familiar Mermin-Wagner theorem, the order
parameter n must vanish for �t→0 at finite temperatures.
The importance of thermal fluctuations is strongly influenced
by kBT /�s. If mean-field theory estimates7 of �s can be
trusted, the value of �s in typical experimental samples
should be �3�10−5 eV and kBT /�s should therefore be less
than 0.1 at the lowest measurement temperatures. At these
low-temperatures thermal fluctuations alone appear to be
insufficient36 to explain the discrepancy even though �t /kBT
is certainly small. The experimental finding that the critical
current saturates at low temperatures supports this conclu-
sion. Similarly, theoretical estimates that quantum fluctuation
corrections to the order parameter are not25 large well away
from the transition boundary are consistent with the experi-
mental finding of saturating critical currents in this regime. It
appears that an explanation for the small critical currents
must be found in the disorder physics of quantum Hall su-
perfluids.

The analysis of tunneling critical currents presented in
this paper can accommodate disorder implicitly through its
influence on the parameters �s and �tn. Including disorder
effects through renormalized coupling constants would be
adequate if the characteristic length scales for disorder phys-
ics are smaller than characteristic length scales like � which
are relevant for pseudospin-transfer torques. In quantum Hall
superfluids disorder may play a more essential role by nucle-
ating charged merons37 �vortices�. As we have explained,
provided that the pseudospin-transfer torque acts only close
to the source and drain, the critical current is proportional to
the integral of �tn over the area of the sample. This integral
is reduced to zero by a single undistorted meron located at
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the center of a large sample. It has, in fact, often12–14,38–40

been recognized that disorder-induced vortices might play an
essential role in many of the transport anomalies associated
with bilayer coherence. It seems likely to us that this type of
physics is very likely responsible for the small critical cur-
rents seen in experiment, but that existing theory is unable to
account for this effect quantitatively. The current status of
the subject calls for a detailed analysis of how they influence
critical currents. On the experimental side, the importance of
complex disorder-related pseudospin textures for critical cur-
rent values could be reduced and the essential physics which
limits critical currents revealed more clearly by studying
samples with much larger bare values of �t.

Although we have attributed the substantial quantitative
disagreement between pseudospin-transfer torque theory and
experiment to disorder-induced pseudospin textures and have
suggested a strategy for achieving more quantitative tests of
our theory, it is appropriate to step back and reconsider other
theoretical pictures that might be relevant to coherent bilayer
tunneling experiments under some circumstances. For ex-
ample, the version of the pseudospin-transfer torque theory
applied here is based on the simplest possible assumption for
the local pseudospin polarization of the transport current,
namely, that the pseudospin current polarization simply fol-
lows the pseudospin density polarization. This assumption is
certainly not generically correct, but its replacement requires
more detailed knowledge of fermionic quasiparticle transport
behavior. One approach is to assume that the quantum Hall
effect establishes edge state transport and use experimental
voltage-probe data to infer41 the length scale on which the
pseudospin polarization of injected electrons is relaxed, and
therefore the length scale over which the pseudospin-transfer
torque acts. The advantage of this approach is that experi-

mental data could be used to obtain the spatial distribution of
pseudospin-transfer torques. Examination of coherent bilayer
transport data suggests36 that the torques sometimes act
along most of the perimeter of the system, as assumed in a
previous18 attempt to understand coherent-bilayer tunneling
data, and sometimes close to the source and drain the con-
tacts as assumed here. The current model is most appropriate
well away from the coherent-state phase boundary as we
have discussed.

The present version of the pseudospin-transport torque
theory does not account for thermal or quantum fluctuations
of the condensate, which are unimportant in metallic ferro-
magnets but might sometimes be important in coherent bi-
layers. Weak-coupling theories12–15 of bilayer tunneling do
account for fluctuations, but treat �t perturbatively. These
theories cannot account for the existence of a critical currents
and in practice assume that each layer has a separate well-
defined local chemical potential. It is clear from published
transport data that this assumption is not always valid, in
particular, that it is not valid in the portion of the phase
diagram far away from the phase boundary on which the
present paper focuses. Experimentally34 the critical-current
value decreases as the phase boundary of the coherent state is
approached by increasing either temperature or the effective
layer separation d / l. It would be interesting to attempt quan-
titative tests of the predictions of weak-coupling theories in
the portion of the phase diagram close to the phase boundary.
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